Atherectomy is Still Live and Effective

John R. Laird, MD Professor of Medicine Medical Director of the Vascular Center UC Davis Health System

Why is Atherectomy Still Alive?

- Improved devices
- Better data (Definitive LE)
- Excellent reimbursement in US (outpatient labs)
- Niche applications (Calcium, ISR, non-stent zones)
- Possibility of Atherectomy plus DCB

Device Evolution

Predator 360° 1.25 mm crown

A second s

Diamondback 360° 1.25 mm crown

Case History

- 54 year old male
- Long standing diabetes mellitus
- ESRD on hemodialysis
- Low level claudication and ischemic rest pain (Rutherford 4)
- Referred for angiography and possible intervention

Diffuse SFA Disease

- 1. Krankenberg et al. Circulation. 2007; 116(3): 285-92
- 2. Dake et al. Circ Cardiovasc Interv. 2011;4:495-504
- 3. Laird et al. Circ Cardiovasc Interv. 2010; 3: 267-276
- 4. Tepe et al. NEJM 2008;358:689-99

Diffuse SFA Disease

Definitive LE - Study Design

- Primary Objective:
- To evaluate the intermediate and long-term effectiveness of stand-alone SilverHawk™ /TurboHawk™ Peripheral Plaque Excision Systems for endovascular treatment of peripheral arterial disease in the femoro-popliteal and tibial-peroneal arteries.
- Details & Oversight:
 - Pre-specified diabetic vs. non-diabetic patency analysis
 - Prospective, non-randomized, global study
 - 800 subjects enrolled at 47 centers
 - CEC and Steering Committee oversight
 - Angiographic and Duplex core laboratory analyses

Study Design and Primary Endpoints

*1 censored due to informed consent violation

Pre-Specified, Non-Inferiority Analysis Diabetic vs. Non-Diabetic Claudicants

*1 censored due to informed consent violation

Baseline Lesion Characteristics Core Lab Reported

Characteristic	Claudication (RCC 1-3)	CLI (RCC 4-6)	All Subjects (RCC 1-6)		
Number of Patients	598	201	799		
Number of Lesions	743	279	1022		
Mean Length (cm)	7.5	7.2	7.4		
Baseline Stenosis (%)	73	76	74		
Occlusions (%)	17	30	21		
Anatomic location based on proximal edge of lesion treatment, % (n)					
SFA	72% (536)	48% (135)	66% (671)		
Popliteal	15% (114)	17% (48)	16% (162)		
Infrapopliteal	13% (93)	34% (96)	18% (189)		

0

Periprocedural Outcomes

Outcome	Claudication (RCC 1-3)	CLI (RCC 4-6)	All Subjects (RCC 1-6)				
Device Success (≤30% stenosis after directional atherectomy)							
Investigator-Reported	87%	87%	87%				
Core Lab	76%	72%	75%				
Procedure Success (≤30% stenosis at end of procedure)							
Investigator-Reported	99%	98%	99%				
Core Lab	91%	83%	89%				

2

Pre-Dilation and Adjunctive Therapy Analysis by Lesion

Therapy	
Pre-Directional Atherectomy PTA	9%
Post-Directional Atherectomy PTA (no stent)	33%
Mean pressure	6.6 atm
Bail-Out Stent	3%

12-Month Primary Patency Claudicant Cohort

Primary Patency Rates are Equivalent Between Diabetic and Non-Diabetic Claudicants

Study Design and Primary Endpoints

DEF LE CLI Cohort Primary Endpoint: Freedom from Major Amputation at 12 Months

95%

Primary Patency CLI Cohort

Potential Niche Applications for Atherectomy

Challenging Lesion Subsets

- Instent Restenosis
- Severe calcification
- Thrombus
- Long occlusion
- Ostial/eccentric

Challenging Anatomy -Non-Stent Zones

- Common femoral artery/Profunda femorus
- Popliteal Artery
 Prior to DCB

Combination Therapies: Best of Both Worlds?

- Greater acute lumen gain of atherectomy without recoil/dissection of PTA
- DCB allows improved patency rates after atherectomy
- Reduced need for stents- less fractures, ISR, don't burn bridges

Challenges for DCB

- Calcium dissection, inability to achieve optimal drug uptake
- Thrombus containing lesions distal embolization, inability to achieve optimal drug uptake
- Instent restenosis tissue extrusion, recoil
- Long occlusion –restenosis rate still may be unacceptably high

Directional Atherectomy & DCB

- N=30, RC 3-6 with heavily calcified SFA, length 5-15 cm
- IVUS pre and post DA and DCB
- Spider EPD
- Balloon 1:1, 180 sec
- Stents allowed only as bailout
- F/U at 1,3,6,12 months with DUS

Directional Atherectomy & DCB

- 100% procedural success
- 7% bailout stenting
- 0% distal embolization
- IVUS MLD
 - 1.2±0.9mm pre DA
 - 4.2±0.5mm after DA
 - 5.1±0.8mm after DCB

Cioppa, CV Revasc Med 2012; 219-23

TurboHawk Calcium Cutter

Directional Atherectomy & DCB: 12 Month Follow-Up

Baseline RC	4.7±1.2	
12 Month RC	2.2±1.0	
Baseline ABI	0.4±0.2	
12 Month ABI	0.8±0.1	
DUS Restenosis, PSVR>2.5	90% 1-Yr Primary Patency	
Major amputation	0	
Minor amputations	10%	
Limb salvage rate	100%	
TLR	10%	

Cioppa, CV Revasc Med 2012; 219-23

Atherectomy & DCB (Zeller)

- Prospective, single center registry
- Rutherford class 2-5
- Native fem-pop disease (31%); ISR (69%)
- DA and DCB: 29 patients
- DA and uncoated balloon (PTA): 66 patients

Atherectomy & DEB (Zeller): 1-Year Outcomes

	DA/DCB	DA/PTA	Р
Primary patency (%)	88%	43%	<0.001
TLR (%)	8%	47%	0.001
Restenosis (%)	13%	58%	<0.001
Secondary patency (%)	92%	63%	0.015

Atherectomy & DCB: Case Exan

after DA

after DCB

Courtesy of T Zeller

DEFINITIVE AR

- Prospective, MC, EU RCT
- Assess Efficacy of plaque excision atherectomy and Medrad PTX DCB vs. DCB alone in Fem-pop disease
- N=100 patients; DUS at 1,6,12M; 1-yr. f/u angio
- Additional 25 patients with severe calcification will be enrolled in a non-randomized arm (atherectomy & DCB)
- Enrollment completed 12/2012
- Pls: G. Tepe/ T. Zeller

Atherectomy in the DCB Era

- Better atherectomy devices available
- Device specific advantages for certain lesion subsets
- More options for heavily calcified lesions
- Helps overcome some of the limitations of DEB – Dissection/sub-optimal PTA result
 - Calcification
 - Thrombus
 - Long occlusion